CorGAT Documentation

Release 1.0.0

Matteo Chiara

Jan 26, 2023

Command line version

1	Prerequisites and usage	3				
	1.1 Mummer installation	4				
	1.2 Mummer installation MacOS X	4				
	1.3 Download of the Reference genome	5				
2	Align to the reference genome	7				
3	Functional annotation	9				
	3.1 Functional annotation: Important!	10				
	3.2 Functional annotation: adding functional elements!	11				
4	Quickstart	13				
5	Importing your data	15				
6	Analysing your data	19				
7	7 Multiple Fasta files					
8	Using a single Multifasta file	23				
9	Annotation	25				
10	Installing the CorGAT Galaxy	27				
11	How to use	29				
12	What to do next:	31				
13	Galaxy dockers	33				
14	14 Indices and tables					

CorGAT is a collection of Perl utilities that can be used to align complete assemblies of SARS-CoV-2 genomes wih the reference genomic sequence, to obtain a list of polymorphic positions and to **annotate** genetic variants according to the method described in *Chiara et al 2020* to be published soon (hopefully). The manuscript is currently submitted and undergoing peer review.

This software package is composed of 2 very simple scripts and a collection of files with functional annotation data. Since the number of available SARS-CoV-2 genomic sequences is increasingly constantly, these files are regularly updated on a monthly basis. If you do not feel comfortable in installing/running CorGAT from the command line, you can find a Galaxy running the software at http://corgat.ba.infn.it/galaxy, or download a dockerized version of the Galaxy, with all the tools here.

🗧 Galaxy / CorO	GAT	Analyze Data Workflow Visualize - Shared Data - Help - User -		Using 143.1 KB
Tools	☆ 🛓		History	C+□\$
search tools	0		search datasets	0
		Welcome, to CorGAT!	Unnamed history	
Get Data		See the CorGAT manual for an explanation of what you can do with	20 shown	
Send Data		CorGAT	172.76 KB	S
Collection Operation	S		112110110	
Lift-Over		Configuring Galaxy » Installing Tools »	20: FunAnn on data 18: lo	• / ×
Text Manipulation			g file	0 0 W
Convert Formats		Take an interactive tour: Galaxy UI History Scratchbook	19: Functional annotation	• / ×
Filter and Sort			of SARS-CoV-2 genomes i	
Join, Subtract and G	roup		n tabular format	
Fetch Alignments/Se	quences		18: consolidated variants	⊛ # ×
Onerate on Genomic	Intervals		file	

If you find any of this software useful for your work, please cite:

Chiara M, Horner DS, Gissi C, Pesole G. Comparative genomics provides an operational classification system and reveals early emergence and biased spatio-temporal distribution of SARS-CoV-2 bioRxiv 2020.06.26.172924; doi: https://doi.org/10.1101/2020.06.26.172924

and

Chiara M, Zambelli F, Tangaro MA, Mandreoli P, Horner DS, Pesole G. CorGAT: a tool for the functional annotation of SARS-CoV-2 genomes. Under Peer review

If you find any issue with the software, please contact me, or report it on github.

Prerequisites and usage

This software package is composed of 2 very simple scripts and a collection of files with functional annotation data. The only requirement is that you have an up to date installation (see below) of the Mummer package in your system and a copy of the reference genomic sequence, in fasta format. All the files (scripts, genomic sequences and accessory files) should be placed in the same folder. To install the command line version od CorGAT you can simply download the most recent version of the program, from the following [link]https://github.com/matteo14c/CorGAT/ . Click on code, and then on Download Zip, as illustrated in this Figure:

P Revision_V1 had recent pushes less	Сотра	Compare & pull request			
ີະ Revision_V1 ▼ ີະ 2 branches	🔁 0 tags	Go to file Add file -	⊻ Code -		
This branch is 26 commits ahead, 22 co	mmits behind master.	Clone	3		
matteo14c Add files via upload		https://github.com/matteo14c/CorGAT 💾 Use Git or checkout with SVN using the web URL.			
AF	Add files via upload				
Documentation	Add files via upload	Download ZIP			

At this point, you can place yoursef il the folder where the program was downloaded. For example if the default of your browser is the Downloads folder:

cd Downloads

you should see a zip archive named CorGAT-Revision_V1.zip. At this point to execute CorGAT you only need to unzip the archive and place yoursef in the CorGAT-Revision_V1 folded

unzip CorGAT-Revision_V1.zip

cd CorGAT-Revision_V1

1.1 Mummer installation

Please follow this link https://sourceforge.net/projects/mummer/files/ for detailed instruction on how to install and run Mummer. Please notice that after you have succesfully compiled all the executables by running:

make install

you will still need to place add these files to your executable PATH, either by adding/copying all the files to one of the directories already included in the PATH or by adding the whole mummer directory (where all the software was compiled) to the your PATH of executables. If for example all your executables are in a folder called "Mummer" in your home directory on a unix system you can symply run:

export PATH=~/Mummer:\$PATH

1.2 Mummer installation MacOS X

Download Mummer at: https://sourceforge.net/projects/mummer/files/latest/download and extract the archive (tar.gz) file. Open up Terminal and:

tar xvzf MUMmer3.23.tar.gz

As explained in the INSTALL file, included in the Mummer package to build Mummer:

cd MUMmer3.23 make check

If make check does not report any error everything should be ok, then run:

make install

You should get something similar to this.

Now that mummer you have successfully built the binaries are, you need to add them to \$PATH. Run the following command with your favourite text editor:

sudo vim /etc/paths

Enter your password, when prompted. Go to the bottom of the file, and enter the path you wish to add. For example, if you built Mummer in /Users/yourname/test/MuMmer3.23, add this to the file:

```
/usr/local/bin
/usr/bin
/usr/sbin
/sbin
/Users/yourname/test/MUMmer3.23
```

Save the file in vim

:wq

And finally you can test if everything is in place. Open a NEW terminal. To test if mummer is now in your PATH, run:

echo \$PATH

You should see something like:

```
echo $PATH
/usr/local/opt/ruby/bin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/Users/yourname/
→test/MUMmer3.23
```

The Mummer package, and all its utilities are now available to be executed in your shell, and for CorGAT as well. For example, type "nucmer" to execute nucmer:

```
nucmer
USAGE: nucmer [options] <Reference> <Query>
Try '/Users/marco/IBIOM-CNR/CorGAT/MUMmer3.23/nucmer -h' for more information.
```

1.3 Download of the Reference genome

The reference genome of SARS-CoV-2 can be found here.

On a unix system you can download this file using wget

followed by

gunzip GCF_009858895.2_ASM985889v3_genomic.fna.gz

Please notice that however the *align.pl* utility is going to download the file for you, if a copy of the reference genome is not found in the current folder. However, since the wget command is required this is supposed to work only unix and unix alike systems. *align.pl* will complain with an error if wget is not available in your system.

Align to the reference genome

The helper script *align.pl* can be used to align a collection of genomic sequences to the reference assembly of SARS-CoV-2 and obtain a list of polymorphic positions. The script automates all the required steps. align.pl currently allows 3 different distinct methods to provide input files/sequences.

Inputs, alternatives:

- 1. Through a multifasta file: option -multi;
- 2. Through a list of file names: option -filelist;
- 3. By specifying a "suffix" that is common to all the names of the files that should be analyses: option –suffix;

All input files *MUST* be in the *same folder* from which the program is executed. A temporary directory will be created to store all the intermediate files and the alingment results for every file. The name of this temporary directory can be specified using the **-tmpdir option**. Please notice that this temporary directory, normally, will be deleted after the execution of align.pl. The **-clean option**, can be used to alter this behavior. If set to **F=FALSE** the temporary directory will not be deleted.

Please check the section *Prerequisites and usage* to obtain the reference genome sequence file. This file also needs to be in the same folder from which the program is executed (and yes **the same** where you have all the files). If the reference genome file is missing, *aling.pl* will try to download it from Genbank. Although this is supposed to work only for unix and unix alike systems (the *wget* command is required)

Finally the name of the output file can be specified by using the -out option. This defaults to ALIGN_out.tsv.

Once you have everything in place, to check if everything works you can simply run:

perl align.pl

The help message, should be self-explanatory. You can try all the 3 different commands under the EXAMPLE section to test align.pl . Example input files are also provided in the main repository of CorGAT

```
perl align.pl --suffix fasta` will use all the files with the \star.fasta suffix in the \rightarrow current folder and finally
```

perl align.pl --filelist lfile` will align the files specified in lfile. One file per_ →line. Again, all files need to be in the current folder

For every genome you will obtain a file with the *.snps* extension, reporting all the polymorphism identified by nucmer. These files will be stored in the temporary directory, as specified by the –tmpdir option (default align.tmp). If the –clean option is set to **T** (**TRUE**) however, this directory will be removed after the execution of the program.

The final output consists in a simple tabular file (default name **ALIGN_out.tsv**) that lists genetic variants on the rows, and reports their presence (1) or absence (0) in the different genomes included in your analysis in the columns. This file provides the input for *annotate.pl*

Functional annotation

The annotate.pl utility is used to perform functional annotation of SARS-CoV-2 variants. The program can be executed very easily, by running:

perl annotate.pl -- in inputFile

This script is very simple to use. Only 3 parameters are accepted in input:

- 1. -in to specify the input file;
- 2. **-out** to set the name of the output file;
- 3. -conf to provide a configuration file;

Warning: The configuration file, is nothing but a simple table that contains the name of the files that should be used to provide different types of functional annotations. A valid example of a configuration file is provided by *corgat.conf* as included in the current repo.(See below). Each row of this file is associated with a keyword (first column), to which the name of the file that should be used follows (second column). In particular:

- genetic -> specifies the name of the file with the genetic code
- genome -> the name of the file with the reference genome sequence
- annot -> a table, with the coordinates of functional genomic elements (see below)
- hyphy -> the file used to provide annotation of variants under selection according to hyphy
- AF -> the file with allele frequency data
- EPI -> the files with annotations of predicted epitopes

Since the number of publicly available genome sequences is increasing constantly over time, the hyphy and AF files are updated on a regular (monthly) basis. The corgat.conf file as provided in this repo is set to use the most up to date version of each file, denoted by suffix current.csv. Older versions are stored in the hyphy_data and AF folders

respectively. Should you need to use an older version of the AF or hyphy annotations for any specific reason, you can simply modify your copy of corgat.conf accordingly. Average users however, should not need to edit this file.

The output consists in a simple table, delineated by <tab> (tabulations) and formatted as follows. If/when the docker or Galaxy version of this software are used, the output can be visualized directly in your browser:

Ge-	Ref	Alt	Funct Elem annot	Allele	Epitopes	Selection	MFE an-
nomic	al-	al-		Fre-	annot	annot	not
posi-	lele	lele		quency			
tion							
376	G	Т	nsp1:c.111G>T,p.E37D,missens	se()o 11616 ab:c.	1 FCCDSIVEEV/ID,	,ln ldHst&nse meme:t	ru N;A tind:positiv
					C*08:01		
29742	G	Т	3'UTR:nc.G68T,NA,NA,NA;sl	5: 10c7G5 5T,1	NAN,AN;	NA	mfe:-
							5.6;-
							4.76;-
							10.93;

Annotation of functional genomic elements, consists of 4 fields, separated by commas (,):

- 1. name of the element, followed by ":"
- 2. relative position (c.= coding, nc.=non coding)
- 3. amino acid change (NA if a non coding element)
- 4. predicted effect on protein (NA if a non coding element)

When a variant is overlapped by more than one element, multiple annotations are reported, separated by semicolumns (;)

Annotation of epitopes is according to https://doi.org/10.1038/s10038-020-0771-5. The sequence of the epitope/epitopes is reported followed by the number and by the names of the HLAs that are predicted to recognize the epitope. Multiple annotations are separated by semicolumns (;).

For example in *FGDSVEEVL*, *1*,*HLA-C**08:01, **FGDSVEEVL** is the sequence of the predicted epitope/epitopes, 1 and **HLA-C***08:01 indicate that the sequence is recognized by just 1 HLA, that is **HLA-C***08:01.

Annotation of sites under selection is very simple: **fel:** is used to indicate if the site is under selection according to fel. Possible values are *true* or *false*. **meme** is the equivalent, but for the meme method. The **kind:** field indicates the type of selection: *positive* or *negative*.

The MFE annot column reports **predicted changes** in MFE (minimum free energy) for variants associated with secondary structure elements. Please notice that this annotation does not report the predicted MFE, but the **difference** between the MFE of the element based on the reference genome sequence, with the MFE calculated on the alternative sequence. Negative values indicate a descrease in MFE (a more stable structure). Positive values are suggestive of a less stable structure (increase in MFE). Three values are reported, representing respectively MFE of: *optimal secondary structure, the thermodynamic ensemble* and *the centroid secondary structure*. Obviusly there is no absolute cut-off for interpreting these results, however high shifts (>1 or <-1) in MFE might be suggestive of functional implications.

3.1 Functional annotation: Important!

Please notice, that to work properly annotate.pl needs to have access (read) several annotation files which provide the different types of functional annotations. If these files are not available, the program will exit with an error, complaining that one or more of the files are missing.

These files are *strictly required* and can be downloaded from the CorGAT Github repository. The repository itself is updated on a monthly basis. So it is *highly advised* that the latest version of the files should be downloaded *before* you perform your analyses. The Galaxy and docker versions of CorGAT are configured to use the most recent version of each file. The update process is handled automatically

Warning: All the files need to be (and normally are) in the same folder from which annotate.pl is executed.

The annotation files, all in simple text format include:

- 1. *genetic_code* -> 3 column file with the standard genetic code
- 2. GCA_009858895.3_ASM985889v3_genomic.fna -> the reference SARS-CoV-2 genome assembly sequence
- 3. annot_table.pl -> a 4 column tabular file with genomic coordinates of functional genomic elements
- 4. *AF_current.csv* -> tabular file with allele frequency data
- 5. *MFE_annot.csv* -> tabular file with Mininum Free Energy predictions for all the possible Single Nucleotide substitutions in secondary structure elements
- 6. epitopes_annot.csv -> tabular file with annotation of predicted epitopes
- 7. hyphy_current.csv -> tabular file with aa residues under selection according to meme/fel

Please see below for a brief guide that will help you to define additional functional elements in annot_table.pl.

3.2 Functional annotation: adding functional elements!

Functional genomic elements in the genome of SARS-CoV-2 are specified by a five columns tabular format file called annot_table.pl. This file can be used to specify additional functional elements and/or use a personalized annot tation. The file has a very simple format: for every element, the first three columns specify respectively, the name of the element (column 1), the start (column 2) and the end coordinate (column 3) on the genome. The fourth column defines the functional class of the element. At the moment 4 different classes are supported:

- 1. protein coding sequences (cds)
- 2. regulatory elements (reg)
- 3. cleavage sites of SARS-CoV-2 polyproteins (clv)
- 4. Sites associated with epigenetic modifications (epi)

Finally the fifth column is optional and contains additional comments and annotations.

To add elements to annot_table.pl you need to open this file with your favourite text editor. First of all position yourself in the CorGAT directory (the directory that was created when you downloaded CorGAT from Github). You should see a file named annot_table.pl. Open this file with your favourite text editor. You should see something similat to this:

At this point any modification of the annotation file should be very simple. For example you can delete any element functional element by deleting the corresponding entry in this file. To add a novel element instead, you should add a line. As you can see from this example, where a custom annotation (custom) of the polyA tail of the genome as been added.

Please rememember that the different columns of this files are delineated by tabulations. Currently the Galaxy and docker version of CorGAT does not allow the specification of a custom annot_table.pl file.

geneN orf10 orf1ab clv1 clv2 clv3 clv4 clv5 clv6 clv7 clv8 clv9 clv10 clv11 clv12 clv13 clv14	28274 29558 266 799 2713 8548 10048 10966 11836 12085 12679 13018 13435 16230 18033 19614 20652	29533 29674 21555 807 2721 8556 10056 10974 11844 12093 12687 13026 13443 16238 18041 19622 20660	cds cds clv clv clv clv clv clv clv clv clv clv	<pre></pre>
5'UTR	1	265	reg	
3'UTR	29675	29903	reg	
sl1 13476		13503	reg	Coronavirus frameshifting stimulation element st
sl2 13488		13542	reg	Coronavirus frameshifting stimulation element st
sl3 29609		29644	reg	Coronavirus 3' UTR pseudoknot stem-loop 1
sl4 29629		29657	reg	Coronavirus 3' UTR pseudoknot stem-loop 1
sl5 29728 TRS-L 70 TRS-B-1spike TRS-B-2orf3A TRS-B-3geneE TRS-B-3geneM TRS-B-4geneM TRS-B-5orf6 TRS-B-6orf7A TRS-B-7orf8 TRS-B-8geneN		29768 75 21556 25385 26237 26475 27041 27388 27888 28260	reg reg 21561 25390 26242 26480 27046 27393 27893 28265	s2m reg spike reg orf3A reg geneE reg geneM reg orf6 reg orf8 reg geneN

				-	- ·
5'UTR	1	265	гед		
3'UTR	29675	29903	гед		
sl1	13476	13503	гед	Согопа	virus frameshifting stimulation element stem-loop 1
sl2 134		13542	reg		virus frameshifting stimulation element stem-loop 2
sl3 296	09	29644	гед		virus 3' UTR pseudoknot stem-loop 1
sl4	29629	29657	гед	Corona	virus 3' UTR pseudoknot stem-loop 1
sl5	29728	29768	гед	s2m	
custom	29871	29903	гед	polyA	tail
TRS-L	70	75	гед	гед	
TRS-B-1	lspike	21556	21561	геg	spike
TRS-B-2	2orf3A	25385	25390	гед	orf3A
TRS-B-3	BgeneE	26237	26242	гед	geneE
TRS-B-4		26475	26480	гед	geneM
TRS-B-5	Sorf6	27041	27046	гед	orf6
TRS-B-6	orf7A	27388	27393	гед	orf7A
TRS-B-7		27888	27893	гед	orf8
TRS-B-8	genen	28260	28265	гед	geneN

Quickstart

To do all of the above:

- 1. Put a multi fasta file of genome sequences in one folder.
- 2. download this repository.
- 3. run perl align.pl --multi <your_fasta_file> --out <your_alignment_results>.
- 4. run perl annotate.pl --in <your_alignment_results> --out <funct_annot_output_file>.
- 5. open the output file, and read the annotations.

Importing your data

Warning: Please notice, this manual provide just a quick and simple reference for the usage of the Galaxy version of CorGAT. Please refer to https://galaxyproject.org/learn/ for a complete and accurate reference on how to use Galaxy

Before doing anything you are required to import your data into Galaxy. This operation is very simple and can be performed by using the Upload file menu, under Get data. As outlined in this figure:

Tools	☆	1
search tools		8
Get Data		
Upload File from your computer		
UCSC Main table browser		
UCSC Archaea table browser		
<u>EBI SRA</u> ENA SRA		

You will be prompted with the following menu:

Select Choose local file and the folder on your system where you have your SARS-CoV-2 genome assemblies. These need to be in FASTA format. One genome per file. Please notice that the name specified in the header of your fasta will be used to identify each genome in all the subsequent steps of this analysis. Use sensible names, preferably avoid names containing strange characters or spaces. Select all the files that you want to upload to Galaxy. Multiple

Regular Composite Collection Rule-based Image: Composite Collection Rule-based Image: Collection Collection Image: Collection Collection Image: Composite Collection Rule-based Image: Collection Collection Image: Collection Collection Image: Composite Collection Rule-based Image: Collection Collection Image: Collection Collection Type (set all): Auto-detect Image: Q Genome (set all): Image: Collection Collection				
	Regular	Composite	Collection	Rule-based
				A Drop files here
Type (set all): Auto-detect v Q Genome (set all): Additional Sp v				
Type (set all): Auto-detect Q Genome (set all): Additional Sp v				
Type (set all): Auto-detect Q Genome (set all): Additional Sp •				
Type (set all): Auto-detect Q Genome (set all): Additional Sp v				
Type (set all): Auto-detect v Q Genome (set all): Additional Sp v				
		т	Type (set all):	Auto-detect v Q Genome (set all): Additional Sp v

files can be selected at this time. Once you have selected all your files, you should obtain something that looks like the picture below. At that point hit start (the blue button). All the files will be imported in Galaxy.

Once your files are imported you should see something like the picture below, meaning that Galaxy is ready to analyse your data.

At this point before doing anything, you also need a copy of the reference genome.

This can be obtained from the following link at NCBI.

Alternatively, you can use the copy of the genome that is preloaded in CorGAT. For that you need to

- 1. navigate to Shared Data and then Data Libraries,
- 2. click on the library called SARS-CoV-2-REF
- 3. tick the file named GCA_009858895.3_ASM985889v3_genomic.fna (the only file in the library)
- 4. and then "export to history". The file must be exported as a dataset.

Please refer to the picture below for all of these operations.

Regular	Composite	Collection	Rule-based				
		You add	ed 4 file(s) to the queue	e. Add more files or click 'Start'	to proceed.		
I	Name	Size	Туре	Genome	Settings	Status	
	3_35_S8.fasta	29.2 KB	Auto-det 💌 Q	Additional Sp 💌	۰	0%	匬
	3_21_S5.fasta	29.2 KB	Auto-det 🔻 Q	Additional Sp 🔻	٥		圃
	3_29_S6.fasta	29.2 KB	Auto-det 💌 Q	Additional Sp	٥		Ŵ
	3_33_S7.fasta	29.2 KB	Auto-det 🔻 Q	Additional Sp v	٥		圃
	T	ype (set all):	Auto-detect	Q Genome (set all):	Additional Sp	v	
		□ Choose	local file	se FTP file	data Pause	Reset Start	Clo

💶 Galaxy / ELIXIR-ITA	Analyze Data Workflow Visualize - Shared Da	Data 👻 Admin Help 👻 User 👻 🗱	Using 1.2 MB
Tools Search tools	Hello, Galaxy is running! To customize this page edit static/welcome.html		≈+□*
Get Data <u>Upload File</u> from your computer <u>UCSC Main</u> table browser	Configuring Galaxy » Installing To Take an interactive tour: Galaxy UI History Se		RS-CoV-2 genomes
<u>UCSC Archaea</u> table browser <u>EBI SRA</u> ENA SRA		4: IZSPB_33_57.ft	asta 💿 🖋 🗙
modENCODE fly server	Colouruis en enen platform for supporting d	3: IZSPB_29_S6.fr	asta 🕐 🖋 🗙
InterMine server <u>Flymine</u> server	Galaxy is an open platform for supporting o is developed by The Galaxy Team with the	2. IZSPB 21 S5 fz	asta 💿 🖋 🗙
modENCODE modMine server MouseMine server	The Galaxy Project is supported in part by NHGRI, N: <u>Sciences</u> , The Institute for CyberScience at Penn Sta		asta 💿 🖋 🗙

r▼ Shared Data ▼ Admin Help ▼ U	lsei							
Data Libraries estricted								
Histories								
Visualizations								
Pages								
# ? + « 0 1 2	» 1 libraries shown (change) 1	total Great Library	include de	eleted 🔲 exclude re	stricted			
namel ⁴	descr	iption		synopsis				
SARS-CoV-2-REF							🚱 🖌 Ed	it 🖀 Manage
* ? include deleted Cre	eate Folder	Export to History *	Download 💌	t Delete 0	Details			
Libraries / SARS-CoV-2-REF								
name 🎝		description		data	type size	time updated (UTC)	state	
🗎 🖉 GCA_009858895.3_ASM9858	889v3_genomic.fna			fasta	29.7 KB	2020-07-20 12:58 PM	0	📽 Manage
	< 0 1 2 > 1 items shown (change) 1 total							

Analysing your data

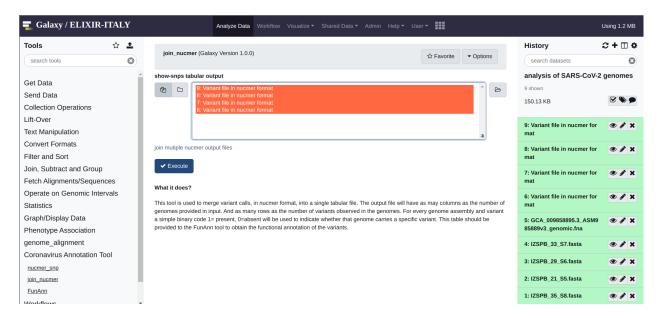
Multiple Fasta files

Warning: Please notice, this manual provide just a quick and simple reference for the usage of the Galaxy version of CorGAT. Please refer to https://galaxyproject.org/learn/ for a complete and accurate reference on how to use Galaxy.

Once all the files have been imported, the analysis with CorGAT is very straightforward.

If everything was done according to the instruction provided in the first part of this manual, you should see something like this:

🚍 Galaxy / ELIXIR-ITALY	Analyze Data Workflow Visualize * Shared Data * Admin Help * User *		Using 1.2 MB
Tools ☆ ± search tools Image: Collection Operations	Hello, Galaxy is running! To customize this page edit static/welcome.html Configuring Galaxy » Installing Tools »	History search datasets analysis of SARS-CoV-2 5 shown 146.37 KB	C + II ¢ C genomes
Lift-Over Text Manipulation Convert Formats Filter and Sort	Take an interactive tour: Galaxy UI History Scratchbook	5: GCA_009858895.3_ASM9 85889v3_genomic.fna 4: IZSPB_33_S7.fasta	• / ×
Join, Subtract and Group Fetch Alignments/Sequences Operate on Genomic Intervals Statistics Graph/Display Data Phenotype Association	Galaxy is an open platform for supporting data intensive research. Galaxy is developed by <u>The</u> <u>Galaxy Team</u> with the support of many contributors. The Galaxy Project is supported in part by NHGRI, NSF, The Huck Institutes of the Life Sciences, The Institute for CyberScience at Penn State, and Johns Hopkins University.	3: IZSPB_29_56.fasta 2: IZSPB_21_55.fasta 1: IZSPB_35_58.fasta	• / × • / ×


The first operation that you are required to do, is the alignment between your genome assemblies and the reference genome. This can be done by means of the "nucmer_snp" which is found under the "Coronavirus Genome Annotation Tool" menu. Simply click on the tool.

The interface is very simple: you are only required to indicate the reference (form on the top) and the "target" genome (form on the bottom). Multiple target genomes can be provided by clicking on the "multiple datasets icon". Once all the "target genomes" have been selected, to run the analysis you can simply hit "Execute" (the blue button).

See below for an example:

			Using 1.2 ME
search tools	nucmer_snp (Galaxy Version 1.0.0)	History search datasets	€ + ⊞ + €
et Data end Data ollection Operations	Reference genome fasta file C C S: GCA_009858895.3_ASM985889v3_genomic.fna reference SARS-CoV-2 genome	analysis of SARS-CoV-2 5 shown 146.37 KB	genomes
xpression Tools ft-Over ext Manipulation	Genome fasta Image: Constraint of the state of	5: GCA_009858895.3_ASM9 85889v3_genomic.fna	• # ×
onvert Formats Iter and Sort	2: IZSPB_21_S5.fasta 1: IZSPB_35_S8.fasta	4: IZSPB_33_S7.fasta 3: IZSPB_29_S6.fasta	• # >
bin, Subtract and Group etch Alignments/Sequences	This is a batch mode input field. Separate jobs will be triggered for each dataset selection. input genome for nucmer	2: IZSPB_21_S5.fasta 1: IZSPB_35_S8.fasta	•

After a brief while, you should obtain an output file for every input genome. These file need to be merged before performing the functional annotation of the variants. This operation is performed by applying the join_nucmer utility, again under Coronavirus Genome Annotation Tool. The interface of the tool is again very simple. All you need to do is to select the files that need to be merged from the form. And once ready, again hit execute.

The output will be a single file called consolidate_variants. This last file, will provide the input of the functional annotation tool, FunAnn which is found under the Coronavirus Genome Annotation Tool menu. The output consists in a tabular format file, where polymorphic positions are reported in the rows. And genomes, as indicated by their header in the respective fasta files, are reported in the columns. A value of 1 is used to indicate variants that are observed/present. Conversely a value of 0 zero indicate variants that are absent. Basically each column, represents the "haplotype" of the genome sequence of that particular genome.

Using a single Multifasta file

🚍 Galaxy / CorGAT	Analyze Data Workflow Visualize * Shared Data * Admin Helo * User *		Using 326.0 KB
Tools	Download from web or upload from disk	/	2+□\$
search tools	Regular Composite Collection Rule-based	n datasets	8
Get Data	You added 1 file(s) to the queue. Add more files or click 'Start' to proceed.	ed history	
Fasta Extract Sequence Extract a single sequence from a fasta file.	Name Size Type Genome Settings Status	:B	S D
Upload File from your computer	□ test_file 297.3 KB Auto-det ▼ Q Additional Sp ▼ ♦ 0% 會		
UCSC Main table browser		ile	• 🖋 🗙
UCSC Archaea table browser			
EBI SRA ENA SRA			
modENCODE fly server			
InterMine server			
Elymine server			
modENCODE modMine server			
MouseMine server			
Ratmine server	Type (set all): Auto-detect Q Genome (set all): Additional Sp		
YeastMine server			
modENCODE worm server	Choose local file Choose FTP file C Paste/Fetch data Pause Reset Start Close		
WormBase server			
ZebrafishMine server	Database/Build		
EuPathDB server	Additional Species Are Below		
<u>HbVar</u> Human Hemoglobin Variant Thalassemias			

Use the get data menue to upload a multifasta file. In this case, the file is simply called "test"

Select the *multiFC* utility under the "Coronavirus Genome Annotation Tool" menue. You should see something very similar to the figure you see below. This tools is very easy to use. You just need to provide a multifasta file as input. By default the tool will align all the sequences included in this file, with the reference assembly of the genome of SARS-CoV-2, and derive a phenetic matrix of presence/absence of polymorphic positions with the same file format as that produced by the join_nucmer utility. This file can be used to provide the input for FunAnn.

Annotation

FunAnn takes only a single file as its input. This is the file created by join_nucmer or by multiFC. Please notice (above) that these files have the same format. To execute the functional annotation of the variants in your genome, click on the FunAnn tool and provide the correct input file. Then hit execute. You should obtain 2 output files. A log file (hopefully empty) which reports possible errors encountered in the execution of the software, and a tabular file with the annotations. If no errors files were encountered, you should see an output file that reads like this:

🔁 Galaxy / ELIXII	R-ITAI	L Y				Analyze Data Workflow Visualize - Shared Data - Admin Help - User -	===			Using 1.2 MB
Tools	☆	1	POS	REF	ALT	annot	AF	Epitopes	History	2+ □ ¢
search tools		8	POS	REF	ALT	annot	AF		search datasets	0
search tools		0	241	С	т	5'UTR:nc.C241T,NA,NA;	73.338		search datasets	0
		-	3037	С	т	orf1ab:c.2772C>T,p.F924F,synonymous;nsp3:c.318C>T,p.F106F,synonymous;	74.656		analysis of SARS-CoV	-2 genomes
Get Data		- 1	7834	С	Т	orf1ab:c.7569C>T,p.N2523N,synonymous;nsp3:c.5115C>T,p.N1705N,synonymous;	0.167		12 shown	
Send Data		- 1	14408	С	т	orf1ab:c.14144C>T,p.P4715L,missense;nsp12:c.968C>T,p.P323L,missense;	74.714	321:FPPTSFGPL,5,		
Collection Operations		- 1	19269	С	Т	orf1ab:c.19005C>T,p.N6335N,synonymous;nsp14:c.1230C>T,p.N410N,synonymous			151.61 KB	
Lift-Over		- 1	23403	A	G	spike:c.1841A>G,p.D614G,missense;	74.957			
		- 1	28881	GGG	AAC	geneN:c.608GGG>AAC,p.RG203KR,missense;	30.179		12: FunAnn on data 10: lo	🖲 🖋 🗙
Text Manipulation		- 1							g file	
Convert Formats		- 1							11: Functional annotatio	• / X
Filter and Sort		- 1							n of SARS-CoV-2 genom	
Join, Subtract and Grou	m	- 1							es in tabular format	
,		- 1							7 lines, 1 comments	
Fetch Alignments/Sequ		- 1							format: tsv, database: ?	
Operate on Genomic In	ntervals	- 1							Cloning into 'SARS-CoV-2	annot'
Statistics		- 1								
Graph/Display Data		- 1							₿02?	۲
Phenotype Association		- 1							1.POS 2.REF 3.ALT 4.annot	
genome alignment		- 1							POS REF ALT annot 241 C T 5'UTR:no	.C241T, NA, NA;
Coronavirus Annotation	Tool	- 1								
Coronavirus Annotation	1 1001	- 1								.7569C>T, p.N2
nucmer_snp		- 1							14408 C T orf1ab:c	.14144C>T,p.P
join_nucmer									4	۰.

Congrats! If you have reached this point you should now be able to use CorGAT to annotate genomic variants in your SARS-CoV-2 genomes.

Please refer to the paper or this documentation for a more complete description of the functional annotations provided by CorGAT.

Installing the CorGAT Galaxy

See here: CorGAT flavor for the Github repository

How to use

- To install Docker follow this procedure.
- Run the container (i.e CorGAT) docker run -d -privileged -p 8080:80 -p 8021:21 -p 8022:22 laniakeacloud/galaxy_corgat:20.05
- Log into Galaxy at http://localhost:8080 username: admin@galaxy.org passwd: password

What to do next:

Now you have a local copy of the CorGAT Galaxy instance. Please refer to the CorGAT Galaxy manual. for tips and instructions on how to execute your analyses

Galaxy dockers

For a more detailed refence on the usage and configuration of Docker based Galaxy instances see: https://github.com/ bgruening/docker-galaxy-stable

Indices and tables

- genindex
- modindex
- search